Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Food Microbiol ; 121: 104521, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637083

RESUMO

Natural whey starters (NWS) are cultures with undefined multiple-strains species commonly used to speed up the fermentation process of cheeses. The aim of this study was to explore the diversity and the viability of Comté cheese NWS microbiota. Culture-dependent methods, i.e. plate counting and genotypic characterization, and culture-independent methods, i.e. qPCR, viability-qPCR, fluorescence microscopy and DNA metabarcoding, were combined to analyze thirty-six NWS collected in six Comté cheese factories at two seasons. Our results highlighted that NWS were dominated by Streptococcus thermophilus (ST) and thermophilic lactobacilli. These species showed a diversity of strains based on Rep-PCR. The dominance of Lactobacillus helveticus (LH) over Lactobacillus delbrueckii (LD) varied depending on the factory and the season. This highlighted two types of NWS: the type-ST/LD (LD > LH) and the type-ST/LH (LD < LH). The microbial composition varied depending on cheese factory. One factory was distinguished by its level of culturable microbial groups (ST, enterococci and yeast) and its fungi diversity. The approaches used to estimate the viability showed that most NWS cells were viable. Further investigations are needed to understand the microbial diversity of these NWS.


Assuntos
Queijo , Lactobacillus delbrueckii , Lactobacillus helveticus , Soro do Leite , Queijo/microbiologia , Microbiologia de Alimentos , Proteínas do Soro do Leite/análise , Streptococcus thermophilus/genética
2.
Food Chem ; 448: 139119, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547703

RESUMO

Buffalo colostrum is the initial mammary secretion after parturition, consisting of nutritional and bioactive components. In this study, we conducted a proteomic analysis of buffalo colostrum whey to identify bioactive proteins and peptides. A total of 107 differentially expressed proteins (DEPs) were identified in buffalo colostrum whey compared to those in mature milk. Gene Ontology analysis revealed that DEPs were primarily associated with immune response and tissue development. KEGG pathway enrichment suggested that colostrum actively enhances nascent immunity involved in interleukin and interferon signaling pathways. Furthermore, candidate antimicrobial peptides (AMPs) of whey protein hydrolysates from buffalo colostrum were characterized, which exhibits broad-spectrum activity against gram-positive and gram-negative pathogens. Overall, this study improves our understanding of protein variations in buffalo lactation, and contributes to the development of AMPs from buffalo colostrum.


Assuntos
Peptídeos Antimicrobianos , Búfalos , Colostro , Leite , Proteômica , Proteínas do Soro do Leite , Animais , Colostro/química , Colostro/metabolismo , Feminino , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/análise , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/metabolismo , Leite/química , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/análise , Soro do Leite/química , Soro do Leite/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38319919

RESUMO

In the category of sports supplements, whey protein powder is one of the popular supplements for muscle building applications. Therefore, verification of the sport supplements as authentic products has become a universal concern. This work aimed to propose vibrational spectroscopy including near infrared (NIR) and infrared (IR) as rapid and non-destructive testing tools for the detection and quantification of maltodextrin, milk powder and milk whey powder in whey protein supplements. Initially, principal component analysis was applied to data for pattern recognition and the results displayed a fine pattern of discrimination. Partial least square discrimination analysis (PLS-DA) and K-nearest neighbours (KNN) were exploited as supervised method modelling classification. This process was done in order to respond to two vital questions whether the sample is adulterated or not and what is the kind of adulteration. PLS-DA showed better classification results rather than KNN according to the figure of merits of the model. Partial least square regression (PLSR) was employed on pre-treated spectra to quantify the amount of adulteration in sport whey supplements. Eventually, it seems vibrational spectroscopy could be implemented as a simple, and low-cost analysis method for the detection and quantification of mentioned adulterants in whey protein supplements.


Assuntos
Contaminação de Alimentos , Soro do Leite , Soro do Leite/química , Proteínas do Soro do Leite/análise , Pós , Contaminação de Alimentos/análise , Análise Espectral , Análise dos Mínimos Quadrados
4.
Food Res Int ; 180: 114074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395577

RESUMO

Low-temperature (9-12 °C) pulsed electric field (PEF) was investigated in milk before cream separation at different intensities (9-27 kV/cm, 66 µs, 16-28 kJ/L) regarding its potential to render processing more sustainable, retain a high physico-chemical quality, enhance functional properties, and gently modify the structure of the milk fat globule membrane (MFGM). Cream volume per L milk were most efficiently increased by 31 % at the lowest PEF intensity in comparison to untreated milk and cream (P < 0.05). Untreated and PEF-treated milk and obtained cream were assessed with compositional (fat, protein, casein, lactose, and total solids content) and particle size distribution analyses, showing no significant differences (P ≥ 0.05) and, thus, indicating retention of 'native-like' product quality. Overrun and stability of cream, whipped for 20 and 60 s at 15000 rpm using a high-shear mixer, were improved most notably by the lowest and the highest PEF intensities, achieving up to 69 % enlarged overrun and up to 22 % higher stability, respectively (P < 0.05), than in untreated whipped cream. Protein component analyses for milk and cream were carried out by sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Noticeable differences between untreated and PEF-treated milk were not observed, but the SDS-PAGE results for cream showed noticeably different bands for some of the protein components, indicating structural changes in MFGM-, whey-, and phospho-proteins due to PEF and/or separator processing effects. More intense bands of xanthine oxidase, xanthine dehydrogenase, butyrophilin, bovine serum albumine, adipophilin (ADPH), and glycoproteins PAS6/7 were observed specifically at 21 kV/cm. Gentle electroporation of both MFGM layers by PEF was determined based on the changes in MFGM monolayer components, such as ADPH and PAS 6/7, exhibiting intensified bands. PEF intensity-dependent impact on the structure of MFGM and casein, leading to a reconfiguration of the cream matrix due to different structuring interactions among proteins, among milk fat globules, and between fat and protein components, was suggested. Overall, low-temperature PEF applied at different intensities showed great potential for gentle, efficient, and functional properties-tailored dairy processing and may also enable effective extraction of highly bioactive ingredients from dairy sources.


Assuntos
Caseínas , Leite , Animais , Caseínas/química , Leite/química , Proteínas do Soro do Leite/análise , Membranas , Soro do Leite
5.
J Dairy Sci ; 107(2): 683-694, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37709016

RESUMO

A side effect of the raised consumption of Greek yogurt is the generation of massive amounts of yogurt acid whey (YAW). The dairy industry has tried several methods for handling these quantities, which constitute an environmental problem. Although the protein content of YAW is relatively low, given the huge amounts of produced YAW, the final protein amount in the produced YAW should not be underestimated. Taking into consideration the increased interest for bioactive peptides and the increased demand for dietary proteins, combined with protein and peptides content of YAW, efforts should be made toward reintroducing the latter in the food supply chain. In this context and in view of the prevalent dietary iron deficiency problem, the objective of the present study was the investigation of YAW fractions' effect on Fe bioavailability. With this purpose, an in vitro digest approach, following the INFOGEST protocol, was coupled with the Caco2 cell model. To evaluate whether YAW digest fractions exert positive, negative or neutral effect on Fe bioavailability, they were compared with the ones derived from milk, a well-studied food in this context. Milk and YAW showed the same effectiveness on both Fe bioavailability and the expression of relative genes (DCYTB, DMT1, FPN1, and HEPH). Focusing further on YAW fractions, by comparison with their blank digest control counterparts, it resulted that YAW 3- to 10-kDa digests fraction had a superior effect over the 0- to 3-kDa fraction on Fe-uptake, which was accompanied by a similar effect on the expression of Fe metabolism-related genes (DCYTB, FPN1, and HEPH). Finally, although the 3- to 10-kDa fraction of bovine YAW digests resulted in a nonsignificant increased Fe uptake, compared with the ovine and caprine YAW, the expression of DCYTB and FPN1 genes underlined this difference by showing a similar pattern with statistically significant higher expression of bovine compared with ovine and bovine compared with both ovine and caprine, respectively. The present study deals with the novel concept that YAW may contain factors affecting Fe bioavailability. The results show that it does not exert any negative effect and support the extensive investigation for specific peptides with positive effect as well as that YAW proteins should be further assessed on the prospect that they can be used in human nutrition.


Assuntos
Ferro , Soro do Leite , Animais , Ovinos , Bovinos , Humanos , Ferro/metabolismo , Soro do Leite/química , Disponibilidade Biológica , Iogurte , Células CACO-2 , Cabras/metabolismo , Proteínas do Soro do Leite/análise , Peptídeos/metabolismo
6.
J Dairy Sci ; 107(1): 169-183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37690729

RESUMO

Our objectives were to determine the effect of fat (skim to whole milk) and protein (3.4%-10.5%) concentration on the sensory and physical properties of milk beverage base that had lactose and other low molecular components removed by ultrafiltration (UF). In experiment 1, a matrix of 16 treatments was produced to achieve 4 levels of lactose removal (0%, 30%, 70%, and 97%) at each of 4 fat levels (skim, 1%, 2%, and whole milk). In experiment 2, a matrix of 12 treatments was produced to achieve 4 levels of lactose removal (0%, 30%, 70%, and 97%) at each of 3 protein concentrations (3.4%, 6.5%, and 10.5% protein). Physical and sensory properties of these products were determined. Removal of >95% of milk lactose by UF required a diafiltration volume of approximately 3 times the milk volume. Lactose and low molecular weight solute removal increased whiteness across the range from skim to whole milk while decreasing viscosity and making milk flavor blander. In addition, lactose (and other low molecular weight solute) removal by UF decreased titratable acidity by more than 50% and increased milk pH at 20°C to >7.0. Future work on milk and milk-based beverages with lactose removed by UF needs to focus on interaction of the remaining milk solids with added flavorings, changing casein to whey protein ratio before removal of lactose by UF, and the effect of lactose and low molecular weight solute removal on heat stability, particularly for neutral-pH, shelf-stable milk-based beverages.


Assuntos
Leite , Ultrafiltração , Animais , Ultrafiltração/veterinária , Leite/química , Lactose/análise , Caseínas/análise , Proteínas do Soro do Leite/análise , Proteínas do Leite/análise , Manipulação de Alimentos , Concentração de Íons de Hidrogênio
7.
Food Funct ; 14(22): 10221-10231, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37916290

RESUMO

Heat sterilization of dairy products can promote the formation of advanced glycation end products (AGEs), protein oxidation products (POPs) and α-dicarbonyl compounds, which have a significant influence on health due to the close association of these products with diabetes complications. In this study, eight oat phenolic acids were first analyzed for their inhibitory effect against AGEs formation. Due to their strong inhibitory effects and structural differences, caffeic acid (CA) and gallic acid (GA) were further selected to assess their anti-glycosylation mechanisms using spectroscopy, chromatography and molecular docking. CA/GA reduced the production of total AGEs and POPs in various bovine milk simulation models and protected whey proteins from structural modifications, oxidation, and cross-linking. Comparative analyses showed a structure-effect relationship between CA/GA and AGEs inhibition. Oat phenolic acids against AGEs and POPs might be related to the unique bonding of key amino acid residues in whey proteins, the inhibitory role of early fructosamine and the trapping of reactive α-dicarbonyl groups to form adducts. In conclusion, oat phenolic acids might present a promising dietary strategy to alleviate AGEs production and glycation of proteins in dairy products upon storage.


Assuntos
Avena , Produtos Finais de Glicação Avançada , Simulação de Acoplamento Molecular , Proteínas do Soro do Leite/análise , Produtos Finais de Glicação Avançada/metabolismo , Avena/metabolismo , Análise Espectral , Cromatografia
8.
J Dairy Sci ; 106(12): 8368-8374, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678779

RESUMO

Membrane filtration is a widespread process for fractionation and recombination of milk components. Although the dissociation of micellar caseins has been studied in detail in skim milk, it is important to better understand the dissociation dynamics occurring between the colloidal and noncolloidal fractions in systems of modified composition. This research aimed at understanding the dissociation of casein proteins in micellar fractions depleted of whey proteins. Casein micelle dispersions were tested at neutral pH and pH 6 (using glucono-δ-lactone as acidulant), after incubation at 4°C or 22°C, and compared with skim milk. The ionic composition of the serum phase was measured using inductively coupled plasma-mass spectrometry, and the protein distribution analyzed using reversed phase-HPLC coupled with mass spectrometry. When incubated at 22°C, there were no differences in casein micelle dissociation between skim milk and whey protein-depleted micelles (∼2.6% dissociated casein). No additional dissociation occurred by lowering the pH from 6.8 to 6 at 22°C, albeit there were more soluble ions at low pH (71% Ca and 65% P). At 4°C, there was an increased amount of ß-casein found in the serum phase (23-33% of total ß-casein). In addition, there was an uneven dissociation behavior of the various genetic ß-casein variants, whereof A2 was more readily released with cooling. In skim milk, approximately 22%, 18%, and 14% of κ-, αS2, and αS1-caseins, respectively, were dissociated from the micellar phase upon cooling and acidification to pH 6.0. This was in contrast to whey protein-depleted casein suspensions, in which only 6%, 5%, and 3% of κ-, αS2, and αS1-caseins, respectively, had dissociated. The results suggested that the whey proteins in the serum phase play a role in the equilibrium between colloidal and soluble caseins in milk. This is of great relevance in processes such as cold membrane fractionation, where more attention should be given to the protein composition in the serum phase, especially when concentration is combined with fractionation of the serum proteins.


Assuntos
Caseínas , Micelas , Animais , Caseínas/química , Proteínas do Soro do Leite/análise , Temperatura , Leite/química , Suspensões , Concentração de Íons de Hidrogênio , Proteínas do Leite/análise
9.
J Dairy Sci ; 106(12): 8321-8330, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641337

RESUMO

Protein lactosylation is a significant modification that occurs during the heat treatment of dairy products, causing changes in proteins' physical-chemical and nutritional properties. Knowledge of the detailed lactosylation information on milk proteins under various heat treatments is important for selecting appropriate thermo-processing and identifying markers to monitor heat load in dairy products. In the present study, we used proteomics techniques to investigate lactosylated proteins under different heating temperatures. We observed a total of 123 lactosylated lysines in 65 proteins, with lactosylation even occurring in raw milk. The number of lactosylated lysines and proteins increased moderately at 75°C to 130°C, but dramatically at 140°C. We found that 6 out of 10, 9 out of 16, 6 out of 12, and 5 out of 15 lysine residues in κ-casein, ß-lactoglobulin, α-lactalbumin, and αS1-casein, respectively, were lactosylated under the applied heating treatment. Moreover, different lactosylation states of individual lysines and proteins can indicate the intensity of heating processes. Lactosylation of K14 in ß-lactoglobulin could distinguish pasteurized and UHT milk, while lactosylation of lactotransferrin can reflect moderate heat treatment of products.


Assuntos
Temperatura Alta , Proteínas do Leite , Animais , Proteínas do Leite/análise , Lactalbumina/análise , Leite/química , Caseínas/química , Lactoglobulinas/química , Proteínas do Soro do Leite/análise
10.
J Agric Food Chem ; 71(32): 12237-12249, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37531557

RESUMO

Cow's milk allergy (CMA) is an abnormal immune response that severely affects the nutritional supplementation of allergic infants. Currently, only a limited number of hypoallergenic formulas are available on the market, and these are only categorized according to their degree of hydrolysis, which still poses an allergy risk and cannot be consumed by CMA patients, especially infants. To address this issue, we developed a two-step hydrolysis hypoallergenic formula targeting destruction of allergen epitope from whey protein. Then, a comprehensive evaluation system was constructed, including peptidomics analysis, in vivo and in vitro allergenicity assessments, revealing allergic changes in the product from the epitope structure level to the immunological level. The results showed that 97.14% of hydrolyzed peptides from α-lactalbumin and ß-lactoglobulin did not contain allergenic epitopes after treatment with trypsin and flavourzyme. In vitro and in vivo allergenicity assessment results confirmed that the two-step hydrolysis method effectively reduced the allergenicity of whey protein. Compared with the common milk powder, the hypoallergenic formula induced lower levels of basophil degranulation and relieved the body's anaphylactic symptoms caused by cow milk. This study provides a promising solution to the limited hypoallergenic formula problem and may benefit allergic infants who require nutritional supplements.


Assuntos
Hipersensibilidade a Leite , Leite , Animais , Bovinos , Feminino , Leite/química , Proteínas do Soro do Leite/análise , Alérgenos , Hidrólise , Epitopos/análise , Imunidade , Proteínas do Leite
11.
Bull Exp Biol Med ; 175(3): 358-361, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37563534

RESUMO

Antimicrobial activity of milk whey in different mammals against Candida albicans yeast cells was studied by a spectrophotometric method. The activity increased in the order goat→horse→camel→cow→human→mouse. The level of whey activity in mice was higher by 3 and 10 times than in humans and goats, respectively. Similar changes were noted for activity of the whey fraction <100 kDa containing a complex of antimicrobial polypeptides, and there was a direct correlation between these two parameters (r=0.881; p<0.05). The total activity of whey had a high degree of correlation with the content of serum albumin (r=0.992); in mice, the level of serum albumin in the milk whey was close to that in blood serum. Interspecific differences between the activity of whey in mammals may be associated with qualitative and quantitative variability of the antimicrobial polypeptide composition, as well as their synergistic or antagonistic interaction with each other.


Assuntos
Leite , Soro do Leite , Feminino , Bovinos , Cavalos , Humanos , Animais , Camundongos , Leite/química , Soro do Leite/química , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/análise , Proteínas do Soro do Leite/química , Mamíferos , Cabras , Peptídeos/análise
12.
Anal Bioanal Chem ; 415(23): 5819-5832, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37505237

RESUMO

Matrix-based certified reference materials (CRMs) play a central role in the analysis of food contaminants for ensuring measurement accuracy and comparability, as they exhibit the same matrix effects during sample preparation and measurement as the food sample under investigation. However, the availability of such CRMs is still limited. This is also true for matrix CRMs containing polycyclic aromatic hydrocarbons (PAHs), for which maximum levels in food are set in the EU by the Commission Regulation (EU) 2023/915 and in Switzerland by the regulation SR 817.022.15. Therefore, a whey protein powder-based certified reference material (WP-CBR001) was developed according to the requirements of ISO 17034 and the recommendations of ISO Guide 35:2017 containing the four PAHs benz[a]anthracene (BaA), benzo[a]pyrene (BaP), benzo[b]fluoranthene (BbF), and chrysene (Chr). We show that the choice of solvent is of crucial importance to extract the PAHs completely from this matrix. Only polar and protic solvents such as methanol or water provided access for complete extraction of the PAHs. In contrast, nonpolar and polar aprotic solvents, such as n-hexane or ethyl acetate, exhibited only very low extraction efficiencies below 20%. The certified mass fractions and expanded uncertainties (k = 2) were (3.17 ± 0.32) µg/kg BaA, (4.18 ± 0.48) µg/kg BaP, (4.73 ± 0.49) µg/kg BbF, and (2.85 ± 0.33) µg/kg Chr. These values were verified by an interlaboratory comparison study and by the gravimetric mass fractions obtained from production data.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Proteínas do Soro do Leite/análise , Pós , Antracenos , Solventes
13.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298782

RESUMO

The increase in demand for food flavorings due to the shortening and simplification of food production technology also entails an increase in the demand for new technologies for their production. The biotechnological production of aromas is a solution characterized by a high efficiency, an independence from environmental factors and a relatively low cost. In this study, the influence of the implementation of lactic acid bacteria pre-fermentation into the production of aroma compounds by Galactomyces geotrichum on a sour whey medium on the intensity of the obtained aroma composition was analyzed. The monitoring of the culture in terms of biomass buildup, the concentration of selected compounds, and the pH resulted in the confirmation of interactions between the analyzed microorganisms. The post-fermentation product underwent a comprehensive sensomic analysis for the identification and quantification of the aroma-active compounds. The use of gas chromatography-olfactometry (GC-O) analysis and the calculation of odor activity values (OAVs) allowed 12 key odorants to be identified in the post-fermentation product. The highest OAV was found for phenylacetaldehyde with a honey odor (1815). The following compounds with the highest OAVs were 2,3-butanedione with a buttery aroma (233), phenylacetic acid with a honey aroma (197), 2,3-butanediol with a buttery aroma (103), 2-phenylethanol with a rosy aroma (39), ethyl octanoate with a fruity aroma (15), and ethyl hexanoate with a fruity aroma (14).


Assuntos
Lactobacillales , Compostos Orgânicos Voláteis , Odorantes/análise , Soro do Leite/química , Fermentação , Olfatometria/métodos , Proteínas do Soro do Leite/análise , Compostos Orgânicos Voláteis/análise
14.
J Dairy Sci ; 106(8): 5242-5252, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37291035

RESUMO

Gastric digestion of 2 commercial ultrafiltered milks and milk enriched with skim milk powder (to simulate concentration by reverse osmosis) was investigated and compared with the digestion of nonconcentrated milk. Curd formation and proteolysis of high-protein milks in simulated gastric conditions were studied using oscillatory rheology, extrusion testing, and gel electrophoresis. The presence of pepsin in the gastric fluid triggered coagulation at pH >6 and the elastic modulus of gels from high-protein milks was ~5 times larger than the gel from reference milk. Despite similar protein concentrations, the coagulum from milk enriched with skim milk powder showed higher resistance to shear deformation than the coagula from ultrafiltered milks. The gel structure was also more heterogeneous. During digestion, the degradation of coagula from high-protein milks was slowed down compared with the coagulum from reference milk, and intact milk proteins were still detected after 120 min. Differences in the digestion patterns of coagula from high-protein milks were observed and were associated with the proportion of minerals bound to caseins and the denaturation rate of whey proteins.


Assuntos
Proteínas do Leite , Leite , Animais , Proteólise , Pós/análise , Leite/química , Proteínas do Leite/análise , Proteínas do Soro do Leite/análise , Caseínas/química , Reologia , Concentração de Íons de Hidrogênio
15.
J Dairy Sci ; 106(6): 3791-3806, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37164856

RESUMO

Yak milk is rich in essential milk proteins of nutritional and therapeutic value. In this study, whey proteins of milk from 3 yak breeds (Gannan, GN; Huanhu, HH; Maiwa, MW) in China were comprehensively identified and compared using a data-independent acquisition quantitative proteomics approach. A total of 632 proteins were identified in yak milk whey samples, in which immune-related proteins were abundant. Compared with other milks, more proteins were involved in oxidation-reduction process and with ATP binding. In addition, we identified 96, 155, and 164 differentially expressed proteins (DEP) for GN versus HH, GN versus MW, and HH versus MW, respectively. "Phagosome" and "complement and coagulation cascades" were the most significant pathways for DEP of GN versus HH and GN or HH versus MW yak milk based on the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Protein-protein interaction network analysis showed that DEP for the 3 comparisons had significant biological interactions but were associated with different functions. The results provide useful information on yak milk from different breeds in China, and elucidate the biological functions of yak milk proteins.


Assuntos
Leite , Proteômica , Bovinos , Animais , Proteínas do Soro do Leite/análise , Proteômica/métodos , Leite/química , Proteínas do Leite/análise , China
16.
J Dairy Sci ; 106(7): 4502-4515, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37164857

RESUMO

Consumers' growing interest in fermented dairy foods necessitates research on a wide array of lactic acid bacterial strains to be explored and used. This study aimed to investigate the differences in the proteolytic capacity of Lactobacillus helveticus strains B1929 and ATCC 15009 on the fermentation of commercial ultra-pasteurized (UHT) skim milk and reconstituted nonfat dried milk powder (at a comparable protein concentration, 4%). The antihypertensive properties of the fermented milk, measured by angiotensin-I-converting enzyme inhibitory (ACE-I) activity, were compared. The B1929 strain lowered the pH of the milk to 4.13 ± 0.09 at 37°C after 24 h, whereas ATCC 15009 needed 48 h to drop the pH to 4.70 ± 0.18 at 37°C. Two soluble protein fractions, one (CFS1) obtained after fermentation (acidic conditions) and the other (CFS2) after the neutralization (pH 6.70) of the pellet from CFS1 separation, were analyzed for d-/l-lactic acid production, protein concentration, the degree of protein hydrolysis, and ACE-I activity. The CFS1 fractions, dominated by whey proteins, demonstrated a greater degree of protein hydrolysis (7.9%) than CFS2. On the other hand, CFS2, mainly casein proteins, showed a higher level of ACE-I activity (33.8%) than CFS1. Significant differences were also found in the d- and l-lactic acid produced by the UHT milk between the 2 strains. These results attest that milk casein proteins possessed more detectable ACE-I activity than whey fractions, even without a measurable degree of hydrolysis. Findings from this study suggest that careful consideration must be given when selecting the bacterial strain and milk substrate for fermentation.


Assuntos
Lactobacillus helveticus , Leite , Animais , Leite/química , Lactobacillus helveticus/química , Hidrólise , Pós/análise , Caseínas/análise , Temperatura , Inibidores da Enzima Conversora de Angiotensina/análise , Proteínas do Leite/análise , Fermentação , Proteínas do Soro do Leite/análise , Angiotensinas/análise , Angiotensinas/metabolismo
17.
J Dairy Sci ; 106(10): 6635-6645, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37210368

RESUMO

In this study, transglutaminase (TG), glucono-δ-lactone (GDL), and citric acid (CA) were used to induce the formation of whey protein isolate (WPI)-milk fat emulsion gels to embed lutein, and the emulsion gels induced in different ways were used for the preparation of processed cheese. The protective effect of emulsion gels induced in different ways on lutein was investigated, and the stability of lutein in emulsion gels and processed cheese was analyzed. The results showed that the acidification rate of CA was higher than that of GDL, which was the key step in acid-induced gels, and that the difference in acidification rate led to differences in gel structure. Compared with the 2 acid inducers (GDL and CA), TG exhibited greater potential for forming gel structures with high strength. The TG-induced emulsion gels showed the best physical stability and the highest embedding efficiency for lutein. After heat treatment (85°C), the GDL-induced emulsion gels had higher retention rate of lutein and showed good thermal stability compared with the CA-induced emulsion gels. The processed cheese added with the TG-induced emulsion gel had higher hardness and springiness compared with the processed cheese added with the other 2 kinds of emulsion gels, whereas the processed cheese added with the CA-induced emulsion gel had a lower density of network structure, showing porosity and a larger aggregated structure, but the highest bioavailability of lutein. These results provide valuable information for the formation of cold-set emulsion gel and provide the possibility for the application of emulsion gel embedding active substances in processed cheese.


Assuntos
Queijo , Leite , Animais , Leite/química , Proteínas do Soro do Leite/análise , Luteína/análise , Emulsões , Transglutaminases , Géis/química
18.
Food Res Int ; 169: 112855, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254429

RESUMO

The interaction between whey proteins and carotenoid is reported to improve carotenoid solubility and stability, however, the strong trend of carotenoids to aggregate when in polar systems is often neglected in papers addressing their molecular interaction. Therefore, this study focused on characterizing the aggregative behavior of the carotenoids from yellow mombin (Spondias mombin) and to understand how these carotenoids behave when added to aqueous dispersions of whey proteins. Carotenoids-rich extract, containing mainly ß-cryptoxanthin and lutein, was obtained from freeze-dried yellow mombin pulp and its aggregative behavior in ethanol/water medium was studied. By increasing the medium polarity, carotenoids trend to form J-aggregation, causing a drop in the color intensity of the solution. When added to whey protein aqueous dispersions, rather than a protein-carotenoid bimolecular interaction, the formation of co-aggregates between carotenoids and whey proteins was evidenced by preparative size exclusion chromatography. These results may contribute to the developing functional food products.


Assuntos
Anacardiaceae , Carotenoides , Carotenoides/análise , Proteínas do Soro do Leite/análise , Luteína/análise , Etanol/análise
19.
Nutr Hosp ; 40(3): 551-558, 2023 Jun 21.
Artigo em Espanhol | MEDLINE | ID: mdl-37073738

RESUMO

Introduction: Introduction: there is a close relationship between obesity, gut health and immune system. A low-grade of inflammation, which could precede obesity, may have implications for the development of metabolic syndrome and insulin resistance. Objective: analyzing the anti-inflammatory capacity of several types of whey (cow, sheep, goat and a mixture of them). Methods: an in vitro model of intestinal inflammation employing a cell co-culture (Caco-2 and RAW 264.7) was performed after an in vitro digestion and fermentation (simulating mouth-to-colon conditions). Inflammatory markers such as IL-8 and TNF-α, as well as the transepithelial electrical resistance (TEER) of Caco-2 monolayer, were determined. Results: digested and fermented whey had a protective effect on cell permeability, being lower in the case of fermented goat whey and mixture. The anti-inflammatory activity of whey was greater the more digestion progressed. Fermented whey showed the greatest anti-inflammatory effect, inhibiting IL-8 and TNF-α secretion, probably due to its composition (protein degradation products such as peptides and amino acids, and SCFA). However, fermented goat whey did not show this degree of inhibition, perhaps due to its low SCFA concentration. Conclusion: milk whey, especially after being fermented in the colon, can be useful nutritional strategy to preserve the intestinal barrier and mitigate the low-grade of inflammation that characterizes metabolic disorders and obesity.


Introducción: Introducción: existe una estrecha relación entre obesidad, salud intestinal y sistema inmune. Un bajo grado de inflamación, que precedería a la obesidad, puede tener implicaciones en el desarrollo de síndrome metabólico y resistencia a la insulina. Objetivo: analizar el poder antiinflamatorio de varios tipos de lactosuero (vaca, oveja, cabra y mezcla de los anteriores). Metodología: se utilizó un modelo in vitro de inflamación intestinal, empleando un cocultivo celular (Caco-2 y RAW 264.7). Para ello, se realizó una digestión y fermentación in vitro (simulando las condiciones de boca a colon). Se estudiaron IL-8 y TNF-α como marcadores inflamatorios y la resistencia eléctrica transepitelial celular (RETE) de la monocapa celular Caco-2. Resultados: el suero digerido y fermentado tuvo un efecto protector sobre la permeabilidad celular que fue menor en el caso de lactosuero fermentado de cabra y mezcla. La actividad antiinflamatoria del suero fue mayor cuanto más progresaba la digestión. El lactosuero fermentado mostró el mayor efecto antiinflamatorio, inhibiendo la secreción de IL-8 y TNF-α, probablemente debido a su composición (productos de degradación proteica como péptidos y aminoácidos, y ácidos grasos de cadena corta [AGCC]). Sin embargo, el suero fermentado de cabra no mostró ese grado de inhibición, quizás debido a su baja concentración en AGCC. Conclusión: el lactosuero, sobre todo tras ser fermentado en colon, puede ser una estrategia nutricional útil para preservar la barrera intestinal y mitigar el bajo grado de inflamación que caracteriza a desordenes metabólicos y a la obesidad.


Assuntos
Leite , Soro do Leite , Humanos , Bovinos , Feminino , Animais , Ovinos , Leite/química , Soro do Leite/química , Células CACO-2 , Fator de Necrose Tumoral alfa , Interleucina-8/análise , Interleucina-8/metabolismo , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/análise , Digestão , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Anti-Inflamatórios/metabolismo , Inflamação/metabolismo , Cabras
20.
J Food Sci ; 88(6): 2655-2664, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37089029

RESUMO

Milk protein concentrate (MPC) is considered an ideal substitute of cow milk because of its similar protein and nutrition. In this study, MPC was hydrolyzed to peptides by alcalase and neutrase, and the properties of hydrolysate were evaluated. When MPC was hydrolyzed at the ratio of alcalase and neutrase of 1:1 and enzyme to substrate ratio of 6000 U/g MPC at 50°C, pH 8.5 for 3 h, the proportion of peptides with molecular weights <1 kDa was 85.31%, and the antigenicity reduction rates of casein and ß-lactoglobulin were 33.76% and 22.38%, respectively. Moreover, LC-MS/MS peptide identification revealed that the alcalase and neutrase disrupted a total of 65 epitopes of casein and 21 epitopes of whey protein, which further elucidated the mechanism of complex enzyme hydrolysis to reduce milk protein allergenicity.


Assuntos
Caseínas , Proteínas do Leite , Animais , Bovinos , Feminino , Proteínas do Leite/análise , Hidrólise , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas do Soro do Leite/análise , Alérgenos , Peptídeos/química , Epitopos , Subtilisinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...